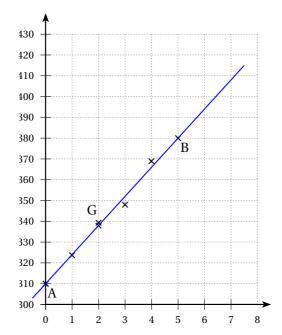
Mercredi 19 Novembre 2025

Lycée Jean DROUANT


SÉRIES STATISTIQUES À DEUX VARIABLES

(SUJET DE SECOURS)

~ 8 points **Exercice 1**

Année	Janvier 2013	Janvier 2014	Janvier 2015	Janvier 2016	Janvier 2017
Rang de l'année x_i	0	1	2	3	4
Nombre de nuités (en millier) y_i	310	323,7	339,4	347,9	368,9

1. Nuage de points et graphique final:

2. Entre 2013 et 2017 : $t = \frac{368,9 - 310}{310} = 0,19 = 19 \%$

Le nombre de nuitées a augmenté de 19 % entre 2013 et 2017.

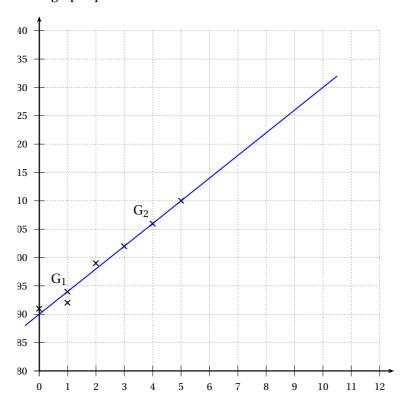
3. Soient \overline{x} et \overline{y} les coordonnées du point moyen G du nuage de points.

On a:
$$\overline{x} = \frac{0+1+2+3+4}{5} = 2$$
 et $\overline{y} = \frac{310+323,7+339,4+347,9+368,9}{5} = 337,98$.

4. Lorsque x = 0, $y = 14 \times 0 + 310 = 310$.

Lorsque x = 5, $y = 14 \times 5 + 310 = 380$.

La droite D d'équation y = 14x + 310 passe par le point A de coordonnées (0 ; 310) et par le point B de coordonnées (5 ; 380).


5. En janvier 2020, x = 7 et $y = 14 \times 7 + 310 = 408$.

A l'aide de cet ajustement, on peut estimer 408 nuitées en janvier 2020.

~ 12 points **Exercice 2**

Année	2012	2013	2014	2015	2016	2017
Rang de l'année : x_i	0	1	2	3	4	5
C.A.: y_i (en milliers d'euros)	91	92	99	102	106	110

1. Nuage de points et graphique final:

2. Soient x_1 et y_1 les coordonnées du point G_1 .

On a:
$$x_1 = \frac{0+1+2}{3} = 1$$
 et $y_1 = \frac{91+92+99}{3} = 94$.

3. Soient x_2 et y_2 les coordonnées du point G_2 .

On a:
$$x_2 = \frac{3+4+5}{3} = 4$$
 et $y_2 = \frac{102+106+110}{3} = 106$.

4. Voir la figure.

5. Soit y = ax + b l'équation réduite de la droite (G_1G_2) .

On a:
$$a = \frac{\Delta y}{\Delta x} = \frac{12}{3} = 4$$
.

Puisque $G_1 \in (G_1G_2)$, alors $94 = 4 \times 1 + b$ et b = 94 - 4 = 90.

L'équation réduite de la droite (G_1G_2) est donnée par : y = 4x + 90.

6. En 2021, x = 9 et $y = 4 \times 9 + 90 = 126$.

Selon ce modèle d'ajustement par la droite (G_1G_2) , on peut estimer le chiffre d'affaires à 126 milliers d'euros en 2021.

7. On a
$$4x + 90 = 140$$
 lorsque $x = \frac{50}{4} = 12,5$.

Par ce modèle, l'embauche pourra avoir lieu en 2025 lorsque x = 13.