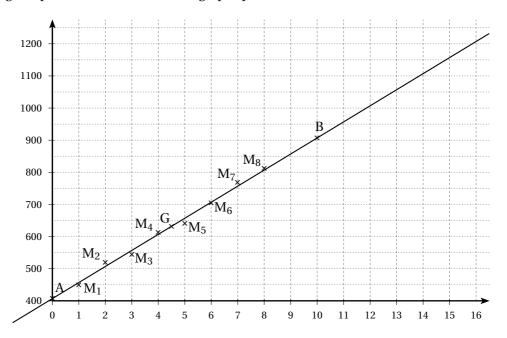
Mercredi 19 Novembre 2025


Lycée Jean Drouant

SÉRIES STATISTIQUES À DEUX VARIABLES

~ 8 points **Exercice 1**

Rang de la semaine x_i	1	2	3	4	5	6	7	8
Nombre de vacanciers y_i	450	520	545	613	641	705	769	813

1. Nuage de points associé à la série et graphique final :

2. On a :
$$\overline{x} = \frac{\sum x_i}{n} = 4.5$$
 et $\overline{y} = \frac{\sum y_i}{n} = 632$.

Les coordonnées du point moyen G sont (4,5; 632).

3. Lorsque x = 0, $y = 50 \times 0 + 407 = 407$.

Lorsque x = 10, $y = 50 \times 10 + 407 = 907$.

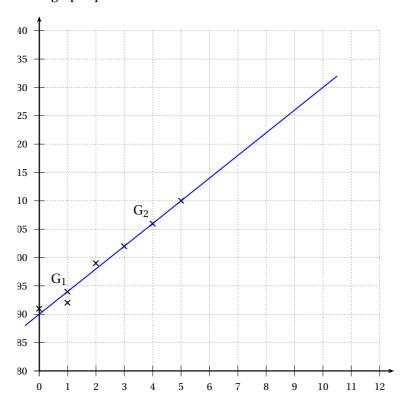
La droite D d'équation y = 50x + 407 passe par le point A de coordonnées (0 ; 407) et par le point B de coordonnées (10 ; 907).

4. On a: $50 \times 10 + 407 = 907$.

Le directeur peut prévoir 907 va canciers dans son centre la $10^{\rm ème}$ semaine d'ouver ture.

5. On a: $50x + 407 = 1200 \Leftrightarrow 50x = 793 \Leftrightarrow x = 15,86$.

Le centre afficherait complet au bout de 16 semaines.


On a: $50 \times 16 + 407 = 1207$.

Le directeur devrait refuser 7 personnes cette semaine là.

~ 12 points **Exercice 2**

Année	2012	2013	2014	2015	2016	2017
Rang de l'année : x_i	0	1	2	3	4	5
C.A.: y_i (en milliers d'euros)	91	92	99	102	106	110

1. Nuage de points et graphique final:

2. Soient x_1 et y_1 les coordonnées du point G_1 .

On a:
$$x_1 = \frac{0+1+2}{3} = 1$$
 et $y_1 = \frac{91+92+99}{3} = 94$.

3. Soient x_2 et y_2 les coordonnées du point G_2 .

On a:
$$x_2 = \frac{3+4+5}{3} = 4$$
 et $y_2 = \frac{102+106+110}{3} = 106$.

4. Voir la figure.

5. Soit y = ax + b l'équation réduite de la droite (G_1G_2) .

On a:
$$a = \frac{\Delta y}{\Delta x} = \frac{12}{3} = 4$$
.

Puisque $G_1 \in (G_1G_2)$, alors $94 = 4 \times 1 + b$ et b = 94 - 4 = 90.

L'équation réduite de la droite (G_1G_2) est donnée par : y = 4x + 90.

6. En 2021, x = 9 et $y = 4 \times 9 + 90 = 126$.

Selon ce modèle d'ajustement par la droite (G_1G_2) , on peut estimer le chiffre d'affaires à 126 milliers d'euros en 2021.

7. On a
$$4x + 90 = 140$$
 lorsque $x = \frac{50}{4} = 12,5$.

Par ce modèle, l'embauche pourra avoir lieu en 2025 lorsque x = 13.