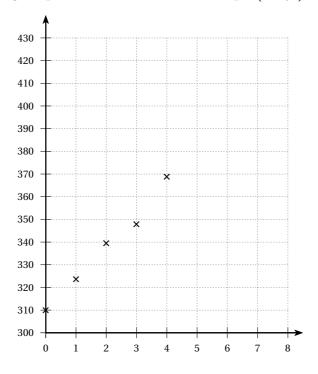
Mercredi 25 Novembre 2020

Lycée Jean DROUANT


SÉRIES STATISTIQUES À DEUX VARIABLES

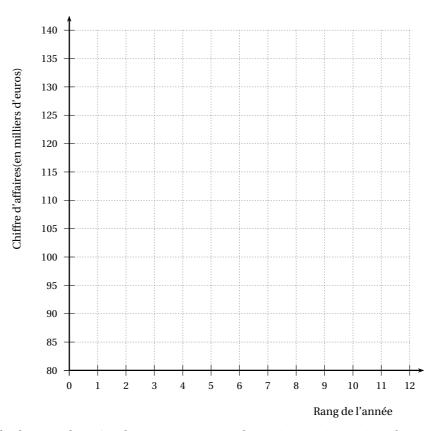
EXERCICE 1

Le tableau ci-dessous donne le nombre de nuitées (en milliers) dans l'hôtellerie en Bretagne au mois de janvier entre 2013 et 2017 (source : INSEE).

Année	Janvier 2013	Janvier 2014	Janvier 2015	Janvier 2016	Janvier 2017
Rang de l'année x_i	0	1	2	3	4
Nombre de nuités (en millier) y_i	310	323,7	339,4	347,9	368,9

On a représenté le nuage de points associé à la série statistique $(x_i; y_i)$.

- 1. Calculer le taux d'évolution global du nombre de nuitées au mois de janvier entre 2013 et 2017.
- 2. Calculer les coordonnées du point moyen G de ce nuage de points.
- **3**. À l'aide de la calculatrice, donner une équation de la droite d'ajustement de *y* en *x* obtenue par la méthode des moindres carrés. *On donnera les valeurs exactes des coefficients*.
- **4.** Dans la suite, on décide de prendre comme droite d'ajustement de y en x la droite D d'équation y = 14x + 310.
 - Tracer la droite *D* sur le graphique.
- 5. Estimer le nombre de nuitées en Bretagne au mois de janvier 2020.


EXERCICE 2

Léa et Jonathan étudient l'évolution du chiffre d'affaires (C.A.) de leur hôtel sur les six dernières années. Les résultats sont regroupés dans le tableau suivant :

Année	2012	2013	2014	2015	2016	2017
Rang de l'année : x_i	0	1	2	3	4	5
C.A.: y_i (en milliers d'euros)	91	92	99	102	106	110

Léa décide de réaliser une estimation du chiffre d'affaires à l'aide d'un ajustement affine.

1. Représenter avec la précision permise par le graphique dans le repère ci-dessous le nuage de points associé à la série statistique $(x_i; y_i)$.

- 2. Calculer les coordonnées du point moyen G₁ des trois premiers points du nuage.
- 3. Calculer les coordonnées du point moyen G_2 des trois derniers points du nuage.
- **4**. Tracer la droite (G_1G_2) sur la figure.
- **5**. Démontrer qu'une équation de la droite (G_1G_2) est : y = 4x + 90.
- **6.** A l'aide d'un ajustement affine par la droite (G_1G_2) , donner une estimation du chiffre d'affaires en 2021.
- 7. Jonathan estime qu'il faudra embaucher du personnel quand le chiffre d'affaires dépassera 140 milliers d'euros.

En utilisant l'ajustement affine par la droite (G_1G_2) , déterminer en quelle année cette embauche pourra avoir lieu.