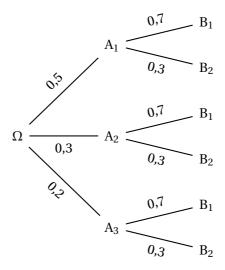
Mardi 11 Février 2025

Lycée Jean Drouant

ÉPREUVES INDÉPENDANTES

EXERCICE 1

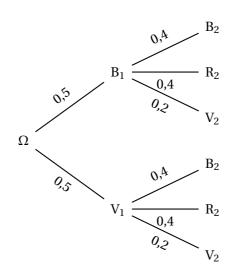
- 1. Les issues de la première épreuve sont A_1 , A_2 et A_3 .
- **2**. Les issues de la deuxième épreuve sont B_1 et B_2 .
- 3. Arbre pondéré:



- **4.** On cherche $p(A_1 \cap B_1)$ et on a : $p(A_1 \cap B_1) = 0.5 \times 0.7 = 0.35$.
- **5**. On a : $p(A_3 \cap B_2) = 0.2 \times 0.3 = 0.06$.

EXERCICE 2

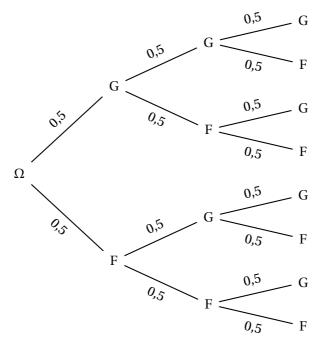
1. Arbre pondéré:



- **2**. On a : $p(E) = p(B_1 \cap B_2) = 0.5 \times 0.4 = 0.2$.
- **3**. On a: $p(F) = p(B_1 \cap B_2) + p(V_1 \cap V_2) = 0.5 \times 0.4 + 0.5 \times 0.2 = 0.2 + 0.1 = 0.3$.
- **4.** On a: $p(G) = p(B_1 \cap V_2) + p(V_1 \cap B_2) + p(V_1 \cap R_2) = 0.5 \times 0.2 + 0.5 \times 0.4 + 0.5 \times 0.4 = 0.1 + 0.2 + 0.2.$ Soit: p(G) = 0.5.

EXERCICE 3

1. Arbre pondéré:



- **2**. Il y a huit issues : $\Omega = \{GGG; GGF; GFG; GFF; FGG; FGF; FFG; FFF\}$.
- **3**. Soit p_1 la probabilité que le couple ait trois garçons.

On a : $p_1 = p(GGG) = 0.5 \times 0.5 \times 0.5 = 0.125$.

4. Soit p_2 la probabilité que le couple ait exactement deux garçons.

On a: $p_2 = p(GGF) + p(GFG) + p(FGG) = 3 \times 0.5 \times 0.5 \times 0.5 \times 0.5 = 0.375$.

5. Soit p_3 la probabilité que le couple ait au moins une fille.

On a : $p_3 = 1 - p(GGG) = 1 - 0.125 = 0.875$.