Vendredi 18 Octobre 2024

Lycée Jean DROUANT

STATISTIQUES ET PROBABILITÉS

(SUJET DE SECOURS)

~ 6 points **Exercice 1**

Forme	Carré	Triangle	Total
Rouge	30	20	50
Vert	10	40	50
Total	40	60	100

- 1. **a.** Il y a 100 jetons.
 - **b.** Il y a 40 jetons carrés.
 - **c.** Fréquence des jetons carrés : $\frac{40}{100} = 0.40 = 40 \%$.
- **2**. **a.** Il y a 60 jetons triangulaires.
 - **b.** Il y a 40 jetons verts triangulaires.
 - c. Fréquence des jetons verts parmi les jetons triangulaires : $\frac{40}{60} \approx 0.67 \approx 67 \%$.
- **3**. **a.** Il y a 50 jetons rouges.
 - **b.** Il y a 30 jetons rouges carrés.
 - **c.** Fréquence des jetons carrés parmi les jetons rouges : $\frac{30}{50} = 0.60 = 60 \%$.

~ 6 points **EXERCICE 2**

1. Tableau:

Sexe Age	Homme	Femme	Total
Moins de 30 ans	28	26	54
Plus de 30 ans	42	104	146
Total	70	130	200

- **2**. **a.** On a : Card(H) = 70.
 - **b.** On a : Card $(H \cap J) = 28$.
 - **c.** La probabilité $p_{\rm H}({\rm J})$ est celle que le professeur choisi ait moins de 30 ans sachant qu'il est un homme.
 - est un homme. **d.** On a : $p_H(J) = \frac{\text{Card}(H \cap J)}{\text{Card}(H)} = \frac{28}{70} = 0,40 = 40 \%.$

~ 8 points **Exercice 3**

1. Tableau:

État	Malade	Bien-portant	Total
Test positif	851	582	1 433
Test négatif	49	28 518	28 567
Total	900	29 100	30 000

Quelques explications:

$$3 \% \text{ de } 30 \ 000 = 0.03 \times 30 \ 000 = 900$$

 $2 \% \text{ de } 29 \ 100 = 0.02 \times 29 \ 100 = 582$

- 2. a. L'événement $P \cap M$ est : « Le test est positif et l'individu choisi est malade ».
 - **b.** On a : $p(P \cap M) = \frac{851}{30\ 000} \approx 0.028$.
 - **c.** On cherche $p_{\overline{M}}(P)$.

On a :
$$p_{\overline{M}}(P) = \frac{582}{29 \ 100} = 0,02$$
.
d. On cherche $p_P(M)$.

On a:
$$p_P(M) = \frac{851}{1433} \approx 0,594.$$